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Organization of the Presentation
• Background of Message Passing (MPI)

• Background of Shared Memory Model (OpenMP)

• Bottlenecks to Parallel Scalability

• Adapting to the hybrid (MPI/OpenMP) programming 
model

• Conclusions and Future Work 
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Parallel Computing
What is it?

• Parallel computing is the use of concurrency in  
program either to:
¾ decrease the runtime for the solution to a problem.
¾ Increase the size of the problem that can be solved.

Parallel Computing gives you 
more performance to throw 

at  your problems.
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Parallel Computing: 
Writing a parallel application.

Original Problem
Tasks, shared and local data

Decompose
into tasks 

Code with a 
parallel Prog. Env.

Corresponding source code

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate( tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate( tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate( tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int Num = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N, Data);
for (int I= ID; I<N;I=I+Num){

tmp = func(I, Data);
Res.accumulate( tmp);

}
}

Grou
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Units of execution + new shared data 
for extracted dependencies
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Types of Parallel Computing Models
• Data Parallel - the same instructions are carried out 

simultaneously on multiple data items (SIMD)
• Task Parallel - different instructions on different data 

(MIMD)
• SPMD (single program, multiple data) not 

synchronized at individual operation level
• SPMD is equivalent to MIMD since each MIMD 

program can be made SPMD (similarly for SIMD, but 
not in practical sense.)

Message passing (and MPI) is for MIMD/SPMD 
parallelism.  HPF is an example of an SIMD interface.



ODU CS Colloquium

What is message passing?

• Data transfer plus synchronization

l Requires cooperation of sender and receiver

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time
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What is MPI?

• A message-passing library specification
¾ extended message-passing model

¾ not a language or compiler specification

¾ not a specific implementation or product

• For parallel computers, clusters, and heterogeneous networks

• Full-featured

• Designed to provide access to advanced parallel hardware for
¾ end users

¾ library writers

¾ tool developers
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Why Use MPI?
• MPI provides a powerful, efficient, and portable way 

to express parallel programs

• MPI was explicitly designed to enable libraries… 

• … which may eliminate the need for many users to 
learn (much of) MPI
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A Minimal MPI Program (C)
#include "mpi.h"
#include <stdio.h>

int main( int argc, char *argv[] )
{

MPI_Init( &argc, &argv );
printf( "Hello, world!\n" );
MPI_Finalize();
return 0;

}
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OpenMP: Introduction

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

OpenMP:  An API for Writing Multithreaded Applications

¨ A set of compiler directives and library routines  for parallel 
application programmers

¨ Makes it easy to create multi-threaded (MT) programs in Fortran, 
C and C++

¨ Standardizes last 15 years of SMP practice

OpenMP:  An API for Writing Multithreaded Applications

¨ A set of compiler directives and library routines  for parallel 
application programmers

¨ Makes it easy to create multi-threaded (MT) programs in Fortran, 
C and C++

¨ Standardizes last 15 years of SMP practice
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OpenMP: Programming Model

Fork-Join Parallelism: 
uMaster thread spawns a team of threads as needed.

uParallelism is added incrementally: i.e. the 
sequential program evolves into a parallel program.

Parallel Regions

Master 
Thread
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OpenMP: How OpenMP is typically used?
• OpenMP is usually used to parallelize loops:

¨ Find your most time consuming loops.
¨ Split them up between threads.

Parallel  ProgramSequential Program

void main()
{

double Res[1000];

for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);

}
}

void main()
{

double Res[1000];
#pragma omp parallel for

for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);

}
}

Split-up this loop between 
multiple threads
Split-up this loop between 
multiple threads
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OpenMP: The Good
• Effective Incremental Parallelism

¾ Important contributor to ASCI Red results (not exactly 
OpenMP, but same philosophy)

• Good SMP and SMP-cluster match
¾ Larger domain decomposition blocks

¾ Dynamic load balance 
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OpenMP: The Not so Good
• Performance

¾ In apples-to-apples comparison with MPI 

¾ Data placement important

¾ Cache blocking etc. mismatch with OpenMP loop 
scheduling

• Restrictions on atomic update/reduce
¾ No vector reduce (p 29) (but see OpenMP 2.0)

¾ Complexity for user comes from exceptions and 
limitations
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OpenMP: The Bad
• Program correctness

¾ It is too easy to write incorrect programs

• Software Modularity
¾ At best 2-level modularity

¾ Many modern algorithms built out of components; how 
will OpenMP support them?

¾ E.g., each component uses limited parallelism to fit 
problem into local caches; application uses task 
parallelism to perform intelligent (not exhaustive 
parameter-space search) design optimization.
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Software Modularity

• Libraries must either
¾ Use OpenMP at “leaves” (e.g., the loop-level), or
¾ Take complete control (user program has no OpenMP parallelism when library is 

called).
¾ But some libraries call other library routines …

¨ E.g., should BLAS use OpenMP?  LAPACK? What if user uses OpenMP for task parallelism for a 
routine that calls an LAPACK routine?

• Using OpenMP at loop-level incurs startup costs
¾ Some vendors suggest

¨ Program Main
!omp parallel
…
!omp end parallel
stop
end

• OpenMP language bindings poorly chosen for mixed-language programming
¾ I.e., programs that use libraries …
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Language Bindings for Mixed Language 
Programming

• Libraries used by Fortran may be written in C (and 
vice versa)
¾ OpenMP naming convention can make this (nearly) 

impossible

• C names should always be distinguishable from 
Fortran names
¾ Unless bindings are identical

¾ Using mixed case for C (as in MPI) is an easy way to do 
this
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Performance Issues for OpenMP
• Overhead of thread management

• Redundant storage and work

• Sequential reduction phase, which tend to be memory 
bandwidth bound

• Simplicity goes away when user takes care of memory 
updates (similar to MPI model)
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Hardware Architecture
Cluster of SMPSMP Symmetric Multi-Processor

cpu cpu

Fast Interconnect

Memory (shared)

•2-128  processors circa late 90’s 40 - 4000 circa 90’s
•Memory shared Memory physically distributed
•High-powered Processors and High-Powered Micros (Alpha, PowerPC)
Micros (some vector, mostly micro)
•SMP means equal access including I/O
•Sometimes term is generalized to mean
Shared Memory Parallel

Interconnect (varies)

Mem

cpu cpu

Mem

cpu cpu
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Motivation for Hybrid Model
• Given

¾ a scalable MPI based code

• Goal
¾ use hybrid model to achieve better performance than MPI alone

• Methodology: 
¾ assign one subdomain to one MPI process

¾ use OpenMP with in a subdomain that gets mapped to a node (with 2 or 
more processors) 

• Advantage
¾ take advantage of shared memory programming within a subdomain

¾ results in bigger subdomains as more than one thread can work on a 
subdomain as compared to pure MPI case
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Our View of the Hybrid Model
• MPI Extreme

¾ the user manages the memory updates

• OpenMP Extreme
¾ the system manages the memory updates

• Hybrid MPI/OpenMP
¾ Some memory updates are managed by the user and the 

rest by the system
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Competing for the Available Memory Bandwidth

• The processors on a node compete for the available 
memory bandwidth

• The computational phases that are memory-bandwidth 
limited will not scale
¾ They may even run slower because of the extra 

synchronizations 
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Stream Benchmark on ASCI Red
MB/s for the Triad Operation

1521571E07

1411451E06

1441401E05

2381375E04

12966661E04

2 Threads1 ThreadVector Size
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Primary PDE Solution Kernels
• Vertex-based loops

¾ state vector and auxiliary vector updates

• Edge-based “stencil op” loops

¾ residual evaluation

¾ approximate Jacobian evaluation

¾ Jacobian-vector product (often replaced with matrix-free form, 
involving residual evaluation)

• Sparse, narrow-band recurrences

¾ approximate factorization and back substitution

• Vector inner products and norms

¾ orthogonalization/conjugation

¾ convergence progress and stability checks
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Features of PETSc-FUN3D
• Based on “legacy” (but contemporary) CFD application 

with significant F77 code reuse
• Portable, message-passing library-based parallelization, run 

on NT boxes through Tflop/s ASCI platforms 
• Simple multithreaded extension (for SMP Clusters)
• Sparse, unstructured data, implying memory indirection 

with only modest reuse
• Wide applicability to other implicitly discretized multiple-

scale PDE workloads - of interagency, interdisciplinary 
interest

• Extensive profiling has led to follow-on algorithmic 
research
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Flux Evaluation in PETSc-FUN3D
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Key Features of Implementation Strategy
• Follow the “owner computes” rule under the dual constraints of 

minimizing the number of messages  and overlapping communication
with computation

• Each processor “ghosts” its stencil dependences in its neighbors

• Ghost nodes ordered after contiguous owned nodes

• Domain mapped from (user) global ordering into local orderings

• Scatter/gather operations created between local sequential vectors and 
global distributed vectors, based on runtime connectivity patterns

• Newton-Krylov-Schwarz operations translated into local tasks and 
communication tasks

• Profiling used to help eliminate performance bugs in communication 
and memory hierarchy
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Factoring out the Parallel Performance
• Implementation Scalability

¾ Problem constrained scalability

¾ Memory constrained scalability

• Algorithmic Scalability
¾ Degrades as the number of processors increase

• Per-processor Performance
¾ Needs attention to the memory hierarchy
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MPI: Parallel Performance on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices 

(about 11 million unknowns) on up to 3072 ASCI Red Nodes (each with 
dual Pentium Pro 333 MHz processors)

ImplementationAlgorithmicOverall

0.53

0.61

0.70

0.80

1.00

Parallel Efficiency

0.820.6512.81159343072

0.890.699.78208322048

5.63

3.20

1.00

Speedup

0.940.8563826512

0.930.76362291024

1.001.002,03922128

Time in

seconds
IterNodes
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MPI: Scalability Bottlenecks on ASCI Red

4.614.2101453072

5.711.781132048
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Hybrid Model: Implementation Issues

• Data Distribution
¾ False sharing

¾ Cache locality

• Work Division
¾ Compiler or User

¾ Static or dynamic

• Updates of the Shared Data
¾ Private data but initialization and reductions are memory 

bandwidth bound

¾ Shared data but updates need to be synchronized
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Hybrid Model: Three Implementation Strategies
• Edge Coloring

¾ Poor cache locality
¾ Compiler divides the work
¾ Updates are independent

• Edge Reordering
¾ Excellent cache locality
¾ Compiler divides work
¾ Updates are a problem

• Manual Work Division
¾ Each MPI process calls MeTiS to further subdivide the work among 

threads
¾ Boundary data is replicated for each thread
¾ “Owner computes” rule is applied for every thread
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Edge Coloring

1  2
3               4
7               8
2               6
1               5
2               3
6               8
4               5
3               6

1  2
2               6
3               4
1               5
2               3
4               5
7               8
6               8
3               6
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Edge Reordering

1  2
1               5
2               6
2               3
3               4
3               6
4               5
6               8
7               8

1  2
2               6
3               4
1               5
2               3
4               5
7               8
6               8
3               6
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TLB Misses: 
Measured Values on Origin

1.00E+04
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Log scale!
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Secondary Cache Misses:
Measured Values on Origin

1.00E+07

2.00E+07

3.00E+07
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5.00E+07
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Base Interlacing Blocking
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MPI/OpenMP in PETSc-FUN3D
• Only in the flux evaluation phase, as it is not memory bandwidth bound

• Gives the best execution time as the number of nodes  increases 
because the subdomains are chunkier as compared to pure MPI case

63

109

293

MeTiS 

Divided

1161301361831024

626391933072

314423332510256

Edge 
Reordering

Edge 
Coloring

21

MPI/OpenMP

2 Threads Per Node

MPI Processes 

Per Node
Nodes
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Conclusions

• OpenMP provides good support for incremental 
parallelism; however, needs attention to allow for software 
modularity, mixed language programming etc.  

• Hybrid MPI/OpenMP achieves good overall performance 
but should be used only in the phases that are not memory 
bandwidth limited
¾ Results in bigger subdomains

¨ Faster convergence rate

¨ Less network transactions
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Related URLs
• Follow-up on this talk

http://www.mcs.anl.gov/petsc-fun3d

• PETSc
http://www.mcs.anl.gov/petsc

• FUN3D
http://fmad-www.larc.nasa.gov/~wanderso/Fun

• ASCI platforms
http://www.llnl.gov/asci/platforms

• International Conferences on Domain Decomposition 
Methods

http://www.ddm.org

• International Conferences on Parallel CFD
http://www.parcfd.org


